Products

Tungsten

Tungsten, or wolfram, is a chemical element with the symbol W and atomic number 74. The name tungsten comes from the former Swedish name for the tungstate mineral scheelite, tung sten or "heavy stone". Tungsten is a rare metal found naturally on Earth almost exclusively combined with other elements in chemical compounds rather than alone. It was identified as a new element in 1781 and first isolated as a metal in 1783. Its important ores include wolframite and scheelite.

The free element is remarkable for its robustness, especially the fact that it has the highest melting point of all the elements discovered, melting at 3422 °C (6192 °F, 3695 K). It also has the highest boiling point, at 5930 °C (10706 °F, 6203 K). Its density is 19.25 times that of water, comparable to that of uranium and gold, and much higher (about 1.7 times) than that of lead. Polycrystalline tungsten is an intrinsically brittle and hard material (under standard conditions, when uncombined), making it difficult to work. However, pure single-crystalline tungsten is more ductile and can be cut with a hard-steel hacksaw.

Tungsten's many alloys have numerous applications, including incandescent light bulb filaments, X-ray tubes (as both the filament and target), electrodes in gas tungsten arc welding, superalloys, and radiation shielding. Tungsten's hardness and high density give it military applications in penetrating projectiles. Tungsten compounds are also often used as industrial catalysts.

Tungsten is the only metal from the third transition series that is known to occur in biomolecules that are found in a few species of bacteria and archaea. It is the heaviest element known to be essential to any living organism. However, tungsten interferes with molybdenum and copper metabolism and is somewhat toxic to more familiar forms of animal life.

History

In 1781, Carl Wilhelm Scheele discovered that a new acid, tungstic acid, could be made from scheelite (at the time named tungsten). Scheele and Torbern Bergman suggested that it might be possible to obtain a new metal by reducing this acid. In 1783, José and Fausto Elhuyar found an acid made from wolframite that was identical to tungstic acid. Later that year, at the Royal Basque Society in the town of Bergara, Spain, the brothers succeeded in isolating tungsten by reduction of this acid with charcoal, and they are credited with the discovery of the element (they called it "wolfram" or "volfram").

The strategic value of tungsten came to notice in the early 20th century. British authorities acted in 1912 to free the Carrock mine from the German owned Cumbrian Mining Company and, during World War I, restrict German access elsewhere.In World War II, tungsten played a more significant role in background political dealings. Portugal, as the main European source of the element, was put under pressure from both sides, because of its deposits of wolframite ore at Panasqueira. Tungsten's desirable properties such as resistance to high temperatures, its hardness and density, and its strengthening of alloys made it an important raw material for the arms industry, both as a constituent of weapons and equipment and employed in production itself, e.g., in tungsten carbide cutting tools for machining steel. Now tungsten is used in many more applications such as aircraft & motorsport ballast weights, darts, anti-vibration tooling, sporting equipment. There are only a few UK based companies which specialise in machining this such as MGS precision in the heart of England.

Physical properties

In its raw form, tungsten is a hard steel-grey metal that is often brittle and hard to work. If made very pure, tungsten retains its hardness (which exceeds that of many steels), and becomes malleable enough that it can be worked easily. It is worked by forging, drawing, or extruding. Tungsten objects are also commonly formed by sintering.

Of all metals in pure form, tungsten has the highest melting point (3422 °C, 6192 °F), lowest vapor pressure (at temperatures above 1650 °C, 3000 °F), and the highest tensile strength. Although carbon remains solid at higher temperatures than tungsten, carbon sublimes at atmospheric pressure instead of melting, so it has no melting point. Tungsten has the lowest coefficient of thermal expansion of any pure metal. The low thermal expansion and high melting point and tensile strength of tungsten originate from strong covalent bonds formed between tungsten atoms by the 5d electrons. Alloying small quantities of tungsten with steel greatly increases its toughness.

Tungsten exists in two major crystalline forms: α and β. The former has a body-centered cubic structure and is the more stable form. The structure of the β phase is called A15 cubic; it is metastable, but can coexist with the α phase at ambient conditions owing to non-equilibrium synthesis or stabilization by impurities. Contrary to the α phase which crystallizes in isometric grains, the β form exhibits a columnar habit. The α phase has one third of the electrical resistivity and a much lower superconducting transition temperature TC relative to the β phase: ca. 0.015 K vs. 1–4 K; mixing the two phases allows obtaining intermediate TC values. The TC value can also be raised by alloying tungsten with another metal (e.g. 7.9 K for W-Tc). Such tungsten alloys are sometimes used in low-temperature superconducting circuits.

Occurrence

Tungsten is found mainly in the minerals wolframite (iron–manganese tungstate (Fe,Mn)WO4, which is a solid solution of the two minerals ferberite FeWO4, and hübnerite MnWO4) and scheelite (calcium tungstate (CaWO4). Other tungsten minerals range in their level of abundance from moderate to very rare, and have almost no economical value.

Production

The world's reserves of tungsten are 3,200,000 tonnes; they are mostly located in China (1,800,000 t), Canada (290,000 t),Russia (160,000 t), Vietnam (95,000 t) and Bolivia. As of 2017, China, Vietnam and Russia are the leading suppliers with 79,000, 7,200 and 3,100 tonnes, respectively. Canada had ceased production in late 2015 due the closure of its sole tungsten mine. Meanwhile Vietnam had significantly increased its output in the 2010s, owing to the major optimization of its domestic refining operations, and overtook Russia and Bolivia.

China remains the world's leader not only in production, but also in export and consumption of tungsten products. The tungsten production gradually increases outside China because of the rising demand. Meanwhile its supply by China is strictly regulated by the Chinese Government, which fights illegal mining and excessive pollution originating from mining and refining processes.

Tungsten is considered to be a conflict mineral due to the unethical mining practices observed in the Democratic Republic of the Congo.

There is a large deposit of tungsten ore on the edge of Dartmoor in the United Kingdom, which was exploited during World War I and World War II as the Hemerdon Mine. Following increases in tungsten prices, this mine was reactivated in 2014,but ceased activities in 2018.

Tungsten is extracted from its ores in several stages. The ore is eventually converted to tungsten(VI) oxide (WO3), which is heated with hydrogen or carbon to produce powdered tungsten.Because of tungsten's high melting point, it is not commercially feasible to cast tungsten ingots. Instead, powdered tungsten is mixed with small amounts of powdered nickel or other metals, and sintered. During the sintering process, the nickel diffuses into the tungsten, producing an alloy.

Contact Us

If you have any questions or proposals, please Contact Us.

Contact Us